If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2d^2+14d-36=0
a = 2; b = 14; c = -36;
Δ = b2-4ac
Δ = 142-4·2·(-36)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-22}{2*2}=\frac{-36}{4} =-9 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+22}{2*2}=\frac{8}{4} =2 $
| -5x+4=-2x=16 | | 7t-78=70 | | -8h-10=-7h | | A=5x+12B=2x+24 | | 2w+7=w | | 2w+7=2 | | 4.7x=-3.2 | | 2x+90+12=180 | | (y+9)=115 | | 8c=7c+7 | | 20=15.25-0.09x | | 9/4x*2-13/7x+1/16=0 | | w-29=67 | | (y+9)=15 | | -1+3x=3x+4 | | 3x−3(6−2x)=27 | | χ²-2=2-3x | | 4x-(3x+2)=-8x+9x-6+4 | | (x+5)+(2x+3)=0 | | 4|k|+4=16 | | 1+x5=−1 | | 11x+49=7x-49 | | 13x-29=11x+15 | | 8x^2-10=50 | | 245=-5-(4x-17) | | 32-6=13x | | 2x-2=22x-3=2 | | (x-2)^2+4=-12 | | -30=6y+6 | | n/7=29/7 | | (3x+45)-(18x-30)=180 | | 4(4a+5=68 |